
International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016                                                                                                     950 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org  

Enhancing the Performance of OpenFlow 
Network by Using QoS 

Ammar D. Jasim and Dalia A. Hamid 
 

Abstract— OpenFlow (OF) is a new technology started in 2008 and managed by the non- profit organization called “Open Network 
Foundation”, and it is one of the standers of Software Defined Networking (SDN). SDN approach differs from traditional network in the way 
that the control plane is separated from the data plane, the data plane is remains in the networking device (switch) while the control plane 
is removed to a separate device called the controller and it is the responsible for controlling the packets in the data plane, The control and 
data planes communicate with each other by OF protocol. While in traditional network, the networking device contains both the data and 
control planes, and the switch is responsible for controlling the packets. This separation in SDN allows the manager and researchers to run 
their own code for controlling and managing the networking devices. 

This paper focusing on study and evaluate the performance of four types of SDN controllers (Floodlight, Beacon, Open-MUL and Open-
IRIS) in OpenFlow network that built in Mininet emulator and then enhance the performance of the network by using QoS technique with 
Floodlight controller. This evaluation has been done by using three types of traffics: ICMP, TCP and UDP. 

Form the results of the evaluation, it can be seen that the SDN controllers show different behaviours that return to the reason that each 
controller uses algorithm to distribute the packets between the threads and also the mechanisms and libraries that have been used by 
each OF controller. And also the performance of the network have shown better results when QoS have been used in the OF network. 

Index Terms— OpenFlow (OF), Software Defined Networking (SDN), QoS, ICMP, TCP, UDP, Mininet. 

——————————      —————————— 

1 INTRODUCTION                                                                     
In 2008, McKeown group at Stanford University presented a 
new protocol named “OpenFlow” to the network community 
[1]. OpenFlow (OF) is the first standard protocol that was de-
signed specifically for Software Defined Networking (SDN). 
Its essential use case is to allow the removal of the native con-
trol plane from the network device to a remote central device. 
OF is now owned by the Open Networking Foundation (ONF) 
[2]. 

In communication networks, the idea of having a central-
ized control plane was far-fetched despite the attempts which 
had been ignored by the network community. However soon 
OF did it. 

The first main reason for that development is for cloud 
servers. The providers of cloud service were facing big chal-
lenges because of the increasing in cloud services (increasing 
the operations in data centers). The networks were designed 
and run in the last thirty years with no enough flexibility to 
tolerate an operation of new required services [3]. 
The server virtualization and cloud computing have changed 
the way of using the data centers. Virtualization allows more 
efficient use of IT resources and greater levels of control. The 
cloud computing extends these benefits, by allowing the or-
ganizations to reduce the complexity of their infrastructure, 
reduce the load of work on staff, and have more rapidly scala-
ble models. Both of these technologies enable the organiza-
tions to better meet their demand [4]. 

But despite of the rapid development of virtualization and 
cloud computing, most of the current network technologies 
have not been developed to consider virtualization and cloud 
computing. So the static topologies still require manual inter-
vention to deploy and migrate virtual machines, that increase 
the cost and the network may have a bottleneck in the future 

and all that affect the organization’s ability to respond quickly 
to the changes in the environment [4]. 

Many companies use OF protocol within their data center 
networks to simplify their operations. OF and SDN allow data 
centers and researchers to innovate their networks with new 
ways because it is easier to abstract the network [5]. 
The second main reason for this development is that the im-
plementation of OF is not restricted in software but can also be 
implemented in hardware and that allows the adopters to 
make experiments with it immediately, such as Google, the 
research team designed new networks based on SDN concept 
[3]. 

2  SDN ARCHITECTURE AND OF TECHNOLOGY 
The ONF is the group that is most associated with the devel-
opment and standardization of SDN. According to the ONF, 
“SDN is the physical separation of the network control plane 
from the forwarding plane, and where a control plane controls 
several devices.” [6]. 
The architecture of SDN is divided into three layers [7], as pre-
sented in Fig. 1.  

a)   Infrastructure layer: it is the foundation layer that 
represents the forwarding hardware in the SDN 
network architecture. When the controller needs to 
communicate with the network infrastructure, it re-
quires certain protocols to control and manage the 
various devices of network equipment; it uses the 
most popular southbound (SB) protocol called OF 
protocol. 

b) Control layer: presents an abstract view of the com-
plete network infrastructure, enabling the adminis-

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016                                                                                                     951 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org  

trator to apply custom policies across the network 
hardware. 

c)  Application layer: it consists of network services and 
applications. The northbound (NB) APIs represent 
the software interfaces between the application and 
control layers. 

  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 SDN architecture 

 The benefits of SDN architecture: 
a) Directly programmable: Network control is directly 

programmable because it is decoupled from forward-
ing functions.  

b) Agile: Abstracting control from forwarding lets the 
administrators dynamically adjust network-wide traf-
fic flow to meet changing needs.  

c) Centrally managed: Network intelligence is (logically) 
centralized in software-based SDN controllers that 
maintain a global view of the network, which appears 
to applications and policy engines as a single, logical 
switch.  

d) Programmatically configured: SDN lets network 
managers configure, manage, secure, and optimize 
network resources very quickly via dynamic, auto-
mated SDN programs, which can be written by them 
because the programs do not depend on proprietary 
software.  

e) Open standards-based and vendor-neutral: When 
implemented through open standards, SDN simpli-
fies network design and operation because instruc-
tions are provided by SDN controllers instead of mul-
tiple, vendor-specific devices and protocols.  

 In OF technology, OF is considered the first SDN standard 
managed by ONF that defines the protocols and functions to 
manage the switches via centralized controller. OF is a proto-
col that provides the communication between the controller 
and the switches over secured channels to enable the control-
ler to manage the forwarding tables in the switches and to 
configure the network devices. The designing and managing 
of network is not the job of this protocol but it’s up to the ven-
dors and the implementers to decide that. The OF architecture 
consists of three components: OF switch, OF controller and OF 
protocol. 
OF switch is the basic device for forwarding the packets ac-
cording to its table that is similar to the table in the traditional 
network but the difference is that the table is not managed by 

the switch. An OF switch contains a flow table that perform 
the packet lookup process and forwarding, and a channel to 
an outer controller. The controller communicates with the 
switch through this channel using OF protocol as presented in 
Fig. 2 [8]. 

 
Figure 2 Connectivity between OF switch and OF controller 

 
The flow table in each switch contains a collection of flow en-
tries, each flow entry contains three fields: header, actions and 
counters as presented in table 1.  

 
 
 
 

 
 
Header field contains ten fields to compare the incoming 
packets with these fields. Table 2 presents these fields. 
While the counters field are used for statistics purpose, to pur-
sue the number of bytes and packets of each flow and also the 
elapsed time since the flow initiation.  
And finally, the actions field defines the way to process the 
packets, the action could be: 

1. Forwarding the packet to a specific port or ports. 
2. Dropping the packet. 
3. Forwarding the packet to a controller.  

 
Today, many OF controllers exist and each one has its own 
properties. Surely there is a question of how to choose the 
suitable controller? The answer is based on the needs of the 
researcher like the supported interfaces, programming lan-
guage, GUI supports, etc. Figure 3 shows the OF controllers 
that have been used in this work. 

3 QOS IN OPENFLOW NETWORK 
Today in networks, to monitor the QoS parameters such as 
bandwidth, delay and packet loss is fundamental to ensure 
that the operations of multimedia applications are smooth. 
This is often done by sending traffic through the network. 
These measurements can only perform in non-peak hours be-
cause these measurements could affect on the production traf-
fic. 
With SDN approach, the network has the ability to perform  

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016                                                                                                     952 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org  

 
Figure 3 OpenFlow controllers 

 
the QoS measurements based on the production traffic with-
out affecting on it [2]. 
OF community recognizes the importance of QoS support by 
performing the OF protocol version 1.0 with several QoS ca-
pabilities. OF switch provides a limited support to QoS 
through the queuing mechanism where one or more queues 
can be attached to one of the OF switch’s port to map the 
flows on it. These mapped flows will be handled according to 
these configured queues such as the minimum and maximum 
rate [8]. 
The other mechanism is the rate limiting where ingress rate 
and ingress burst are specified. OF switch will drop any pack-
ets beyond these specified rates [9]. 
When the switch starts its connection to the controller, it 
should send a report to the controller of its QoS capabilities 
like the supported classes. A certain level of service can be 
assigned to each flow entry in the table of the OF switch, this 
service is called a service class. Then the assigned flow will 
place in the respective service queue. Three QoS primitives is 
proposed by OF organization to be inserted into the OF 
switches. These primitives are [5]: 

1. Minimum Rate: also called slicing, that gives a mini-
mum bandwidth to each flow at each egress.in the 
case that the switch is not able to give the minimum 
rate to the egress of the flow, then the switch permit 
the flow to be part of a queue that called a service 
class. The setting and configuring of the queues will 
be done by the OF controller to arrange each flow in a 
specific queue. The controller does this process to ad-
just the treatment of the packets in the switch.  

2.  Rate Limiting or Maximum Rate: designed for limit-
ing the rate of the packet flow.  

3. Strict Precedence: to assign a priority to the flows in 
the OF switch table. 

4 EXPERIMENTAL SETUP 
The goal of this work is to evaluate the performance of a cus-
tom network built in Mininet emulator. This evaluation has 
been done by implement the OF controllers and three types of 
traffic were used during the evaluation: ICMP, TCP and UDP 
traffics. Then propose a method to enhance the network. 
The purpose of ICMP traffic is to measure the additional delay 
that obtained from the controller to process the first packet of 
a flow. The additional delay comes from the connection be-
tween the switch and the controller. Ping tool was used to 

generate this traffic. 
The purpose of TCP traffic is to see how the transfer time of 
TCP packets will be affected by the communication between 
the switch and the controller. By Implementing a TCP client-
server application, this traffic will be generated. The meas-
urement of transfer time has been done by using different siz-
es of data, the measured time include the time from the estab-
lishment of the connection until the close of the connection 
after sending all the bytes. Iperf tool was used to generate this 
traffic. 
Since UDP is the protocol with no retransmission process, the 
purpose of using UDP traffic is to see how the delay from the 
connection between the switch and the controller would affect 
on its operation like packet loses. This traffic has been gener-
ated by using client-server application and the measurement 
has been done by using different sizes of data. Iperf tool was 
used to generate this traffic. 
The works have been done in a laptop of type MacBook Air 
with processor 1.4 GHz Intel core i5ntel with 2 cores and 4 GB 
for the memory. And running Ubuntu 12.04 64-bit LTS Linux 
Operating System. 
The network consists of six OF switches and eight hosts as 
presented in Fig. 4. The measurements were done in two cases: 
the first case where the network is idle and the second case 
where there is background traffic (BT) that is generating new 
flows during the measurements. The purpose of the BT is to 
increase the workload for the controllers to see how this af-
fects on its behavior. TCP traffic was used as BT and generated 
by using Iperf. The packets are transferred from h5 to h7 and 
from h6 to h8. 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4 Setup of the network 
 

In the measurements of ICMP traffic, h1 represents the source 
and h2, h3 and h4 represent the destination respectively. 
While in the measurements of TCP and UDP traffics, h1 repre-
sents the source and h4 represents the destination. The band-
width was set to 100 Mb/s.  
The proposed method to do the enhancement is by using QoS 
technique, and seeing how this technique affects the perfor-
mance of the network. 
Floodlight controller was chosen to be the tested controller. A 
QoS module has been added to this controller that does tasks 
like matching, flow insertion- deletion, classification and poli-
cy treating for QoS. This module allows us to define queuing 
policies and transmit them to a specific queue on switch port 
with a given action like rate limits. 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016                                                                                                     953 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org  

The QoS was added on the path between s2 and s3 and the 
workflow for using it as follow: 
A. Run the Floodlight controller and connects it with the cus-
tom network in Mininet emulator. 
B. Create the QoS queues with minimum rate of 20 Mbps and 
maximum rate of 100 Mbps. 
C. The application QoSManger is used to add, modify and 
delete the policies and services in the network, and enable the 
controller to start adding the policies and service. 
D. The application QoSPath uses the circuitpusher program to 
push QoS along a path in the network. 

5 PERFORMANCE EVALUATION 
Four OF controllers have been tested to evaluate the perfor-
mance of the network by using ICMP, TCP and UDP traffics, 
and the test has been done in two case, first when the network 
is idle and second when there is a BT in the network. 

1.  Before the enhancement 
For ICMP, by using Ping, RTT has been measured by repeat-
ing the test five times and the average was taken as a final re-
sult. The RTT is measured for 1, 2 and 3 hops and in the two 
cases. 
Figure 5 shows the time of the first packet without BT and Fig. 
6 presents the time with BT. 
In the case of no BT, it can be observed that the first packet 
with Floodlight controller takes more time than in other con-
trollers to reach nearly 15 ms at three hops while in Open-
MUL controller, it takes less time to reach nearly 6 ms, thus 
Open-MUL controller has the best results among other con-
trollers when the network is not overloaded. 

 
Figure 5 Time of the first packet without BT 

 
 

 
 
 
 
 
 
 
 

Figure 6 Time of the first packet with BT 
 

 In the case of BT, the time of the first packet at one hop is 
around 12 ms in all the controllers. In two and three hops, the 
first packet of a flow takes less time in Open-IRIS controller 
than the others. Thus when the network is overloaded, Open-

IRIS controller has the best results of time among other con-
trollers. 
Figures 7 and 8 show the average RTT for the controllers in the 
two cases. There are two observations, the first one; Floodlight 
controller shows the highest value of average RTT among oth-
er controllers in the case of BT and in the case without it, while 
Open-MUL controller shows the lowest values among other 
controllers in the two cases. 
 

 
Figure 7 Average RTT without BT 

 

 
Figure 8 Average RTT with BT 

 
The second observation from these results, the values of aver-
age RTT for each controller was decreased when there is BT 
and this result was expected, since the connection between the 
switch and the controller is already initiated before beginning 
the ping and sending Echo Request/Reply packets.  
For TCP, the test was done by implementing a TCP client-
server application to measure the transfer time of data in dif-
ferent sizes, the measured time includes the time from the es-
tablishment of the connection until the close of the connection 
after sending all the bytes. And this test was done in two cas-
es: without BT and with BT.  
The host h1 was configured as TCP client and host h4 was 
configured as TCP server and the sizes of data are: 100, 200, 
350, 500, 750 and 1000 Mbytes. Figure 9 presented the transfer 
time of the different bytes without BT and Fig. 10 shows the 
transfer time with BT. 
It can be seen when the network is idle, the transfer time of 
bytes is nearly the same in all the controllers that reach 90 sec 
to send 1000 Mbytes. While when the network has BT, the 
transfer time in the controllers is nearly the same when 100, 
200 and 350 Mbytes was sent, and when the number of bytes 
began to increase, Open-MUL controller consumed more time 
to transfer than other controllers, while Beacon and Open-IRIS 
controllers have showed the same results almost that reach 230  
sec to send 1000 Mbytes. 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016                                                                                                     954 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org  

 
Figure 9 TCP transfer time without BT 

 
 

 
Figure 10 TCP transfer time with BT 

 
For UDP, the test has been done by implementing UDP client-
server application and record the percentage of packet loss 
during sending a data of sizes: 100, 200, 350, 500, 750 and 1000 
Mbytes.The host h1 was configured as UDP client and host h4 
configured as UDP server.Figures 11 and 12 present the per-
centage of packet loss in case of no BT and with BT respective-
ly. 

 
Figure 11 UDP packet loss without BT 

 
From the results, when the network has no BT, the packet loss 
is around zero except Floodlight that has very small loss when 
sending 100 Mbytes. While when there is a BT, the controllers 
show different values of packet loses, Open-MUL controller  
 
 

 
Figure 12 UDP packet loss with BT 

 
shows high values of packet loss according to other control-
lers, while Floodlight controller was the best one among the 
other controllers but this value is still considered not good, 
since the acceptable value for packet loss must be less than 1%. 

 
2. the After the enhancement 

The purpose of this section is to see how the measurements for 
ICMP, TCP and UDP would be after using QoS techniques in 
the network with Floodlight controller. The obtained results 
were compared with previous results of Floodlight controller. 
For ICMP, after configuring the OF switch with the required 
policies, BT was started between h5 and h7 and also between 
h6 and h8 by using iperf. Then ICMP Echo request/Reply was 
sent from the source to the destination. The source is h1 and 
the destination would be h2, h3 and h4. 
The time for the first packet and the average RTT were evalu-
ated five times and an average was taken as a final result as 
shown in Fig. 13 and Fig 14. From the results, a significant 
improvement it can be seen in both the time of the first packet 
and RTT at 2 and 3 hops. 

 

 
Figure 13 Time of the first packet with QoS 

 
For TCP, the transfer time is evaluated for different data sizes 
as presented in Fig. 15, it can be observed that the use of QoS 
technique reduced the transfer time by 68% at sending 100 
Mbytes and nearly 50% at sending 200,350 and 500 Mbytes 
and reduced by 40% at sending 750 and 1000 Mbytes. 
For UDP, The UDP differs from TCP that it has no handshake 
process between switches and controller.At first; the source 
sends the data to the first switch on the path and the switch  
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016                                                                                                     955 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org  

 
Figure 14 Average RTT with QoS 

 

 
Figure 15 TCP with QoS 

 
has a buffer to store the packets then the packets will be sent 
to the controller after the buffer becomes full. This will over-
load the link and if the link did not support this load, this will 
lead to packet loss. 
The other important thing in UDP is the throughput of send-
ing; UDP in general sends datagram one after without re-
transmitting. This will cause the buffer to be full very fast if 
the throughput of sending is high, and this will increase the 
time that the packets should wait until the buffer is empty, 
and this increases the probability of packet loss. 
The results for this UDP measurement are as shown in Fig. 16. 
From the results, it can be seen distinctly how QoS technique 
reduced the number of packet loss to 99%. 

6 CONCLUSION 
The OpenFlow protocol gives a certain degree of freedom in 
how flows are set up in a network. The measurements of 
ICMP packets show that the values of RTT for the controllers 
are decreased when apply a BT in the network and this result 
was expected since the connection between the switch and the 
controller is already initiated before sending Echo Re-
quest/Reply packets. The Open-MUL controller shows the 
lowest values for RTT among other controllers in the case of 
no BT in the network and in the case with BT, while Floodlight 
controller shows the highest values of RTT in both cases. From 
the TCP measurements, the transfer time of bytes is nearly the 
same in all the controllers when the network is idle. While 
with BT, Open-MUL takes more time than the others to trans-
fer 500 Mbytes and more till 1000 Mbytes. 

 
Figure 16 Packet loss with QoS 

 
Form the UDP measurements; Open-MUL controller has large 
packet loss when the network is overloaded with BT. 
From this work, the difference in throughput and delay values 
for the OF controllers are due to:  

1. The used algorithm from the OF controller to distrib-
ute the incoming messages between threads. 

2. The used mechanisms and libraries for the interaction 
between the network and the OF controller. 

And when QoS have been used, it can be concluded that ap-
plying QoS in OF network enhances the performance of Flood-
light controller. 

REFERENCES 
[1]  N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. 

Rexford, S. Shenker, J. Turner, “Openflow: Enabling Innovation in Campus 
Networks”, ACM SIGCOMM Computer Communication Review, v.38 n.2, 
April 2008. 

[2]  Open Networking Foundation,” Open Networking Foundation specifica-
tions”, Available at: https://www.opennetworking.org/ja/sdn-resources-
ja/onf-specifications 

[3]  M. Jarschel, “An Assessment of Applications and Performance 
Analysis of Software Defined Networking”,University Wurzburg, 
2014. 

[4] R. Mehra,”Designing and Building a Datacenter Network: An Alter-
native Approach with OpenFlow”, NEC Corporation, 2012. 

[5]  F. Hu,”Network Innovation through OpenFlow and SDN: Principles 
and Design”, 1st edition, CRC Press, 2014. 

[6] CITRIX systems,”SDN 101: An Introduction to Software Defined 
Networking”, 2015. 

[7] P. Chhikara, G. Matharu, V. Deep,“Towards OpenFlow Based Soft-
ware Defined Networks”,IEEE ICCIC, Coimbatore, 2014. 

[8] Open Networking Foundation, “OpenFlow Switch Specification”, 
version 1.0.0,2009. 

[9] Open vSwitch, “Rate-Limiting VM Traffic Using QoS Policing”, 2014, 
available at:  

http://openvswitch.org/support/config-cookbooks/qos-rate-limiting/. 

 

IJSER

http://www.ijser.org/
https://www.opennetworking.org/ja/sdn-resources-ja/onf-specifications
https://www.opennetworking.org/ja/sdn-resources-ja/onf-specifications
http://openvswitch.org/support/config-cookbooks/qos-rate-limiting/

	1 Introduction
	2  SDN Architecture and OF technology
	3 QoS in OpenFlow Network
	4 Experimental setup
	5 Performance Evaluation
	6 Conclusion
	References



